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Introduction 

The selection of mission trajectory parameters has usually been made 

on the basis of the resulting deterministic trajectory. Error analyses have 

sometimes been carried out subsequently to determine the statistical effects 

of random disturbances on the trajectory. It is thus possible to estimate the 

probability that the pre-planned mission will be successful. 

Techniques have been developed, and a computer program prepared 

and tested, for choosing trajectory parameters to maximize the probability of 

success of a mission directly. The main idea is the recognition that the statis- 

tical distribution of perturbed trajectories, as well as the nominal trajectory 

itself, depends on the nominal trajectory parameters. The mission probability 

of success is thus completely determined by the input statistics, assumed speci- 

fied, and the nominal trajectory parameters. 

The principal advantage of the technique developed is that it is not neces- 

sary to do Monte Carlo simulations to calculate the probability of success. This 

immediately foretells an order of magnitude reduction in computing time, at 

ieast, over procedures requiring iarge numbers or̂  simulations. in order to 

optimize the trajectory parameters, furthermore, it is necessary to use a suc- 

cessive improvement scheme, changing the parameters each iteration to produce 

a modest, if not small, increase in the success probability. An efficient scheme 

for computing the success probability thus becomes essential. 

The gradient program which has been prepared allows optimization of 

a particular translunar mission, although all the structure and most of the equa- 

tions a re  included for any open-loop space mission. The program is also suitable 

for the addition of orbit determination and feedback control system equations. 

Although these naturally represent major additions, it appears that existing pro- 

grams could be added largely intact. 
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General Problem Formulation 

The general problem considered assumes there a re  a number of mission 

trajectory parameters, 6, which are free to be chosen. These parameters 

determine the nominal trajectory. Statistics of random disturbances are  given 

so that it is possible to calculate the covariance of trajectory perturbations. 

By assuming that the perturbations from the nominal flight path are  always 

small enough so that their governing differential equations may be linearized, 

and assuming that all input disturbances a re  Gaussian random variables, the 

probability distribution of the state may be (approximately) calculated. The op- 

timization problem is choosing 6 to maximize the probability that the terminal 

state (position and velocity) variables are within certain bounds. The number 

of bounds may be as large, in principle, as the number of state variables, al- 

though the computational strain increases if more than two are  imposed. 

The state of the system is denoted by x, where 

r R I  
L ~ J  

x =  

R is the position vector 

t = time 

The nominal value of x ( t )  is denoted x(t) .  Perturbations from 2 are  

denoted 6x so that 
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For concreteness, a trajectory will be considered successful if two functions 

of the terminal state, ql(xf) and 'p2(xf) are between al, bl and a2, b2 

respectively. * With the small perturbation assumption 

Equation (3) assumes that the terminal time t is fixed. The theory for the 

extension to variable terminal time has been carried out in other analyses and 

could easily be included. 

f 

With linear equations for 6 i  and Gaussian random inputs, the pertur- 

bation variables 6x will each be Gaussian random variables. Then 6 oi , 
being a linear combination of Gaussian random variables, is also a Gaussian 

random variable. The mean of 6qi is zero with the assumption of zero mean 

disturbances. The variances are given by 

ui 2 = e[(6qif] = 
ax 

where 

x = &[ax ~1 

@ (  ) = ensemble average of ( ) 

( )T = ( ) transposed 

tr( ) = trace ( ) 

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - _ - _ - - - - - - - - - - - - - -  
* ( >, = ( ) evaluated at the initial point 

( )f = ( ) evaluated at  the terminal point 
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The cross correlation is 

Equation (5) defines p ,  the correlation coefficient. 

is the bivariate Gaussian 1' 6 q 2  The joint probability distribution of 6cp 

A trajectory is successful if (p +6'p and (p + 69 a re  between a b and 

The probability of success is thus 
1 1 2 2 1' 1 * respectively. a2' bz 

aQi 
ax 

J is seen to depend only on ui, p ,  - and Gi. These quantities in turn 

a re  all determined from x( t ) and X(tf). By showing how and X depend 

on the @ parameters, J may be reduced to a function only of @ and various 

specified quantities. 

f 

Almost by definition, the nominal trajectory itself depends on the control 

parameters. The parameters are either initial conditions, jump conditions, or 

constants that appear in the equations of motion: 

- x = f (T ,P , t )  

* -  'pi = 'piGf) 
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Integrating (8) from t to t gives z(t ) and consequently (K ). The 

integration method is a modified Encke in which the major portion of the 

solution is obtained analytically, the remaining portion from numerical inte- 

gration. 

0 f f i f  

The covariance matrix, X, may be closely approximated by using 

only the analytic functions from the nominal trajectory solution. In this way 

X( t ) may be obtained from a series of algebraic equations between "rectifica- 

tion" times. The rectification times are determined, in the course of obtaining 

the nominal trajectory, on the basis of keeping the major portion of Z( t ) 

piecewise analytic. The entire approximation for X( t ) is piecewise analytic. 

Since the analytic functions a re  taken directly from the nominal trajectory, 

the dependence of X( t ) on (I is immediately determined. 

The mathematical problem is the choosing of /3 to maximize J .  A 

global maximum would be desirable, but it appears that any currently feasible 

technique will only be able to guarantee a relative maximum. 
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Equations for the Nominal and Covariance Matrix Histories 

Inertial Cartesian coordinates are used to describe the position and 

velocity of the vehicle center of mass. The position is a three-vector R, 

the velocity R. The launch site position, Ro, is input, with the earth center 

R = 0. The launch time, 

although any parameter could easily be made an input quantity instead. Con- 

versely, most constants in the program could be made control parameters 

with minor modifications. A simplified boost model is used. The parking 

orbit altitude, the earth angle traversed during boost, and the duration of the 

boost are input. At tl, the time of injection into parking orbit 

in this case is one of the control parameters, 

A 

R~ = rlG0 cos(8 -7) +Ro sin(p - y > ~  

A 

Kl = "1- k0 sin(@ - 7 )  + Ro C O S ( 6  -?)I 

where r is the magnitude of R, v is the magnitude of R? /? is the earth 

angle traversed during boost, r - r is the parking orbit altitude, y is the 1 0  
flight path angle at tl, ( A )  is a unit vector in the direction of ( ), 

h A A . 
R = N c o s $  + E ~ i n $ ~  
0 0 

A A  

h A A  

N = R x E  
0 

A 
A h  

N, E are unit vectors in the north and east directions at launch, k is a unit 

vector in the z inertial direction, 

v 

r - r  tl - to, 1 0' 
is the launch azimuth. 

is one of the control parameters. 
$0 

p,  y are each input, 
1' 
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The vehicle coasts from tl until t the beginning of the second burn. 

is one of the control parameters. Modified Encke method 
2’ 

The interval t2 - t 
coast equations previously used by Analytical Mechanics Associates, Inc., flef. 1, 

are  used to obtain R2, R2. The thrust magnitude starting at t 

thrust direction is given in terms of pitch and yaw angles p and y: 

0 

is input, the 2 

= cosp cosy + (ixH) sinp cosy + ;I siny k 

T is the thrust, k is the thrust magnitude, H is the angular momentum. 

The pitch and yaw angles a re  control parameters. 

.. 
Instead of integrating R directly, the substitution, from Ref. 2, 

R = S + P  

is used. S is a relatively simple analytic function chosen to approximate R, 

so that P is essentially a small correction term. S and S are  written as 

functions of t and t where t is the last rectification time. At each recti- 

fication time, S is set equal to R and P is set equal to zero: S( tr+) = R( tr), 

Pi tr+) = 3 .  The rectification times a re  choser? when P exceeds certain limits. 

r’ r 

is input. From t to t the The length of the second burn, tg - t2, 3 4 
coast equations a re  again used. This interval is the midcourse region, a coast 

out to the vicinity of the moon in this program. During this time, it is assumed 

that a switch from earth reference to moon reference (for calculating S) is 

made. The total flight time up to retrofire, t4 - t 
but the duration of the retrofire burn is an input number. The alignment (inertial) 

of the vehicle axis at t4 is just as it was at t 

direction. Retrofire burnout time is t 

is a control parameter, 
0’ 

The thrust is in the opposite 
3’ 

5 ’  
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At the same time the nominal trajectory is calculated, the covariance 

matrix approximation is obtained. In this problem X( tl) is input. X( tz) is 

obtained from 

where 

if t >tr, where t 

for coasting periods a re  given in Ref. 1. 

is the last rectification time. The equations for @( t, t +) r r 

For the thrusting interval t 5 t t X( t )  is calculated from 
2 3’ 

rn rn 

The equations for cP( t, v) and U( t, t +) are given in Ref. 2 .  The Y matrix r 
is the covariance of thrust execution errors .  It is derived assuming that the 

thrust magnitude has a Gaussian random e r ro r  and that the thrust direction has 

a Gaussian random er ror .  This leads to 

m is the total vehicle mass, 

thrust magnitude, Q! is the root mean square e r ror  in thrust direction relative 

to the nominal direction. These errors  a re  input quantities. 

is the root mean square relative error  in k 

The propagation of X during subsequent coasting and thrusting periods 

is just as given above. X is calculated along with S. Numerical integrations 

a re  not required for S and X; they obey difference equations between rectifi- 

cation times. 
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Gradient Method of Optimization 

The control parameters may be arranged as a vector 

B =  

0 
t 

$0 

t, 
P 

Y 

t4 - to 

A gradient procedure starts with an initial /3 vector and successively makes 

changes, dp,  so as to increase J according to the linearized approximation 

aJ d J  = - d p  
a0 

The specific gradient procedure followed here is to select d p  so as to maxi- 

mize d J  subject to specified dP, where 

(dP)2  = dp T W d p  

W is the metric of the @ space; it is an input diagonal matrix for the program. 

The value of dP is determined automatically by the program on each iteration 

after the first. 

If x, the vector of partial derivatives of J with respect to the com- 
a0 

ponents of p ,  is available, the optimal d p  with constraint (22) is 
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where 

The heart of this procedure is the gradient vector aJ. Through the use of 

adjoint theory, it is possible to construct a method for calculating aJ 
a!? 

ab 
exactly (within the limits of numerical integration accuracy). The concepts 

of this approach are given in Ref. 3, which gives details for a continuous 

control optimization. Adapting this analysis to the control parameter prob- 

lem of this report is straightforward. Because this approach leads to a much 

larger programming effort, it was decided, for the present program, to cal- 

culate the gradient numerically with the approximation 

where A.J is the change in J produced if only component 8. is changed 

by an amount b Ri. There is a problem in selecting the Bpi. On the one 

hand, if AB. is selected too large, the secant approximation of (25) will not 

be accurate. On the other hand, AiJ produced by a too small A B i  may be 

inaccurate because it is the difference of two nearly equal numbers, J(gi + A pi) 

1 1 

1 

and J(B,). 

The program operates automatically to produce each AS.  yielding 

\AiJI between .0001 and .001. If lA . J I  is outside this range, the next 

ASi is adjusted accordingly. As J is accurate to six decimal places, - 
consequently retains three significant figures, which should be comparable to 

the closeness of approximating aJ . as, 

1 

A - J  1 

Alsi 

Another decision with the gradient method is the choice of the matrix 

W. In this problem W 

same order. In words, 

Ai  J 
is chosen so that for each i ,  - d/3. will be the 

each d/3. will give roughly the same predicted 

ABi 1 

1 
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increase in J .  This is a somewhat conservative approach in that it '!holds 

back" the more influential parameters, but it does provide steady, easily 

controlled, convergence. 

Denoting the ith diagonal element of W as wi, W is chosen ac- 

cording to 

P 1 - = (APi 
W. 
1 new 

where "Pi 

This leads to 

is the value of A@. to be used on the next es  
1 new 

AiJ 

'4 new 
dSi = "(-)ASi 

This, in turn, leads to a predicted increase in J of 

3J imation of -. vi 

The remaining choice in the gradient procedure is the selection of the 

step size dP. The main criterion is that the predicted d J  be "reasonably" 

close to the actual d J  that is obtained. Closeness is measured according to 

the value of 

Jact- Jpred 

Jpred 
c =  

If is between -. 05 and .15, dP is increased by 30% in order to ac- 

celerate convergence. If c is over .15 or between -. 15 and - .05,  dP 

is kept the same. If is less than -. 15, dP is reduced by 20-SO%, 
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depending on the 

gram. These factors could be changed if desired, but it is believed that the 

present program values are quite workable and that it would not be fruitful 

to readjust them unless a more sophisticated dP were to be used. 

value. The reduction factors can be noted from the pro- 
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The Anchored IMP Problem, with Example 

The goal of the particular translunar mission that the POMS program 

designs is achieving a lunar orbit with long term stability. Such stability is 

considered achieved if the apocynthion and pericynthion of the lunar orbit cal- 

culated using the two-body approximation are within specified limits. Hence, 

the calculations end following the retrofire near the moon. The probability 

of success is calculated based on retrofire burnout conditions, both nominal 

and statistical. 

In the nomenclature of the general problem formulation, the functions 

(pi( xf ) a re  the apocynthion and pericynthion calculated at t Hence, 5' 

where 

2 2  1/2 
e = [(y-1) + d, 

Pa 

A complete sequence of iterations was made in testing the program. 

The upper bound on apocynthion used was 38,000 km; the lower bound on 

pericynthion 3346 km. The initial nominal trajectory used is described in 

detail in the last section. The probability of success, J, was .05 for that 

trial trajectory. A sequence of forty-two iterations on f? resulted in J of 

.95 .  The most significant numbers for each iteration a re  given in Table 1. 
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I te ra -  
tion 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 

J 
Lid- 

3.00  
A.40 

11.58 
13.29 
19.64 

24.49 
26.10 
30.23 
33.76 
30.31 

44.35 
52.00 
59.69 
63.13 
66.03 

69.46 
72.52 
76.45 
78.91 
81.45 

83.54 
85.48 
86.88 

89.73 

90.80 
91.59 
92.22 
92.82 
93.03 

93.58 
93.76 
94.06 
94.23 
91.42 

94.69 
94.79 
94.91 
94.91 
94.99 

95.01 
95.07 
95.08 

O Q  A Q  
Y".  TU 

dP 
- 

10.0 
10 .0  
13.0 
16 .9  

22 .0  
20.6 
22.8 
18 .3  
23 .8  

30.9 
40.2 
52.2 
41.8 
33 .4  

26.7 
21.4 
27.0 
36 .1  
20.2 

16.2 
13.0 
10.4 
13.5 
1 3 . 5  

10.8 
8.62 
6.90 
6.90 
6.90 

5.52 
4 .41  
3.53 
2.82 
2.26 

2.26 
1.81 
1.45 
1.88 

.74 

.74 

.59 

.59 

AJpred 
5;: ) 

3.90 
2 .85  
3.39 
4.02 

4.69 
6.18 
6 .09  
3.33 
4.39 

5.98 
7.43 
9.75 

12.26 
5.32 

4 .11  
3 .10  
3.92 
6.22 
8.05 

5.87 
2.79 
1.47 
1 .83  
1.88 

1.64 
.96 
.70 
.64 
* 74 

.97 

.56 

.45 

.22 

.20 

.32 

.13 

.12 

.13 

.07 

.06 

.05 

.04 

bJact a 

3.41 
3.17 
3.71 
4.35 

4.85 
1 .61  
4.15 
3.52 
4.54 

6.05 
7.65 
7.69 
3.44 
2.90 

3.43 
3 .06  
3.93 
2.46 
2.54 

2 .10  
1.94 
1.40 
1.60 
1 .25  

1.07 
.79 
.62 
.61 
.20 

.55 

.18 

.31 

.17 

.19 

.27 

.10 

.12 

. 00 

.08 

.02 

.06 

. 01 

91 
0 

113900 
73500 
64520 
56340 
49450 

45830 
38730 
38930 
36800 
34680 

32710 
29870 
28420 
26210 
25810 

24710 
24120 
23520 
22850 
23110 

22530 
22460 
22200 
21980 
21620 

21520 
21280 
21170 
21000 
20960 

20810 
20800 
20700 
20680 
20620 

20520 
20490 
20440 
20460 
20430 

20430 
20410 
20400 

O1 

0 
127100 
79700 
61520 
48700 
39590 

31380 
35740 
27890 
25420 
22700 

19020 
16420 
11930 
14200 
11680 

12800 
11990 
12660 
10510 
12780 

11060 
11410 
10930 
10740 
10000 

10090 
9704 
9609 
9368 
9502 

9089 
9223 
8979 
9017 
8895 

8818 
8816 
8692 
8776 
8704 

8730 
8683 
8709 

Table 1 

Test Case Results 

'p2 
0 
18530 
15520 
15060 
14790 
14370 

15010 
11250 
12920 
12660 
12570 

13080 
13040 
14490 
13240 
13250 

12530 
12020 
11520 
10540 
10220 

10140 
9996 
9848 
9665 
9513 

9432 
9331 
9253 
9114 
9027 

8810 
8866 
8740 
8757 
8695 

8680 
8696 
8613 
8656 
8611 

8622 
8592 
8618 

14 

O2 
0 

20390 
19170 
16900 
15180 
13830 

12860 
9720 

11450 
10850 
10320 

10690 
10380 
12830 

9390 
11110 

8276 
7732 
5413 
6044 
2523 

4086 
3009 
3060 
QCC4 

2997 

2419 
2576 
2382 
2381 
1914 

2271 
1944 
2149 
1985 
2058 

2001 
1934 
2035 
1901 
1963 

1901 
1936 
1886 

I U U  

P 

-.9517 
-.9421 
-. 9250 
-.go30 
-.E849 

-.E241 
- .9444 
-. 8572 
-. 8513 
-.E419 

-. 8072 
-. 8207 
-. 7122 
-. 8728 
-. 8005 

-.E708 
-. 8574 
-. 8734 
-. 8070 
-. 7090 

-. 7919 
-. 7410 
-. 7309 

ccnn 
-.UU"I 

-. 6953 

-. 6063 
-. 6329 
-. 5905 
-. 5762 
-. 4152 

-. 5130 
-. 4040 
-. 4667 
- .4069 
-.4278 

-. 4033 
-.3756 
-.4077 
-. 3501 
-.3745 

-. 3446 
-. 3583 
-. 3359 

t, 
0 

0 
-. 0537 
-. 0663 
-. 0805 
-. 0944 

-. 1071 
-. 1209 
-. 1164 
-. 1243 
-. 1346 

-. 14'75 
-. 1703 
-. 1866 
-. 1983 
-. 1894 

-. 1989 
-. 1955 
-. 1980 
-. 1812 
-. 1841 

-. 1819 
-. 1825 
-. 1810 
-. 15so 
-. 1780 

-. 1785 
-.1773 
-. 1767 
-. 1748 
-. 1743 

-. 1700 
-. 1719 
-. 1694 
-. 1703 
-. 1691 

-.1697 
-. 1703 
-. 1686 
-. 1698 
-. 1698 

-. 1692 
-. 1687 
-. 1693 

$0 

(den) 

89.40 
89.20 
88.99 
88 * 80 
88.65 

88.53 
88.44 
88.40 
88.36 
80.34 

88.30 
80.25 
88.17 
88.14 
88.10 

88.08 
88.06 
88.03 
88.01 
88.00 

88.00 
87.99 
87.99 
57.98 
87.97 

87.96 
87.95 
87.95 
87.95 
87.94 

07.94 
87.94 
87.94 
87.93 
87.93 

87.93 
87.92 
87.92 
87.92 
87.92 

87.92 
87.92 
87.92 

t - t  2 0  
J!EL 

.3110 

.3108 

.3115 

.3125 

.3139 

.3159 
,3141 
.3161 
.3168 
.3179 

.3193 

.3202 

.3224 

.3213 

.3222 

.3216 

.3218 

.3212 

.3216 

.3203 

.3209 

.3206 

.3207 

.320G 
,3208 

,3206 
,3207 
.3206 
.3206 
.3204 

.3205 

.3204 

.3204 

.3204 

.3204 

.3204 

.3204 

.3204 

.3204 

.3204 

.3204 
,3204 
.3204 

P 
A&?!& 

0 
.0009 
.0144 
.0287 
.0582 

. l l O O  

.2004 

.2381 

.3154 

.4223 

.5728 

.6890 

.E380 

.9773 
1.020 

1.060 
1.088 
1.128 
1.158 
1 .171  

1.175 
1.188 
1.200 
1.2:s 
1.232 

1.246 
1.256 
1.266 
1.276 
1.286 

1.289 
1.294 
1.298 
1.301 
1.304 

1.308 
1.311 
1.313 
1.313 
1.314 

1.315 
1.316 
1.317 

Y 
(den) 

0 
- .0004 
- .0165 
- .0415 
- .0766 

- .1344 
- .2027 
- .2976 
- .3866 
- .5236 

- .7318 
-1.069 
-1.370 
-1.218 
-1.351 

-1.403 
-1.484 
-1.563 
-1.705 
-1.697 

-1.809 
-1.845 
-1.902 
-1.962 
-2.041 

-2.062 
-2.118 
-2.148 
-2.187 
-2.213 

-2.238 
-2.248 
-2.266 
-2.277 
-2.291 

-2.303 
-2.314 
-2.322 
-2.325 
-2.329 

-2.333 
-2.336 
-2.340 

t4 -  t, 
IXL 
73.00 
73.21 
73.31 
73.51 
73.94 

74.36 
74.85 
74.81 
75.10 
75.49 

75.78 
76.04 
76.38 
76.51 
76.65 

76.84 
77.01 
77.15 
77.31 
77.34 

77.34 
77.40 
77.44 
77. Si 
77.55 

77.59 
77.60 
77.63 
77.64 
77.66 

77.67 
77.69 
77.69 
77.71 
77.71 

77.72 
77.73 
77.73 
77.73 
77.74 

77.74 
77.74 
77.74 



The initial trajectory had cp, (apocynthion) of 113,900 km, 'p2 (pericynthion) 

of 18,500 km. The standard deviations ul and u2 were 127,100 km and 

20,400 km respectively. The major change in the first ten iterations was the 

reduction of cp to 32,700, o1 to 19,000, and o2 to 10,700 km. At this 

point J was .44. In the next seven iterations cp and q changed only 

slightly, but u1 and u2 were reduced to 12,700 and 5,400 km respectively, 

with J increasing to . 76 .  The remaining iterations achieved much slower 

progress with J = .90  obtained on the twenty-fifth iteration and, finally, 

J = . 9 5  on the forty-second. 

1 

1 2 
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Description of the Computer Program 

POW (FORTRAN 11) is an automatic parameter optimization program 

which is presently designed for a lunar capture mission. The program in- 

cludes a simple approximation for the booster ascent phase which yields the 

injection conditions for the earth parking orbit. The covariance matrix of 

the state associated with these injection conditions is assumed to be a diagonal 

matrix with terms 
2 - 

- dl-3 - ( A R )  = 2 

- 2  
d4-6 = (AR)  = 

(" lo 
2 

The basic structure of the program assumes that, after injection into earth 

parking orbit, the vehicle coasts for a prescribed length of time. Then a 

thrusting period occurs, followed by a coast and another thrust. The durations 

of the above phases are given as input. Different Encke methods a re  used to 

solve the equations of motion during the thrust and coast stages. The co- 

variance matrix of the state is propagated to the end of the last thrust. During 

thrust, e r rors  due to the uncertainties associated with the thrust magnitude 

and direction contribute to the state covariance matrix. 

It is not until the final thrust is over that the program is concerned 

with particular application to a lunar capture mission. The covariance matrix 

of the state is used to compute the probability that the apocynthion and peri- 

cynthion lie within the bounds given as input. Two FORTRAN I1 SHARE rou- 

tines a re  used to compute this probability; ERR1 (SDN #1322) and BVN (SDN 

#1323). These write-ups describe the probability a s  having an e r ror  of one 

unit in the sixth decimal place. 
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If a different mission objective were desired (rather than prescribing 

limits on apocynthion and pericynthion), it would be a simple matter to re- 

write this portion of the program. If the number of mission objectives is 

increased, however, it becomes numerically more difficult to compute the 

probability of success. 

The program uses an automated gradient procedure to yield a nominal 

mission plan which has the largest probability of success. It accomplishes 

this by choosing optimal values of the following six parameters: 

1) launch time 

2) azimuth of the launch plane 

3) time from launch to first thrust 

4) pitch orientation of thrust axis 

5) yaw orientation of thrust axis 

6) time from launch to second thrust 

The automated gradient procedure numerically computes the change in the 

probability of success as each one of the control parameters is subsequently 

varied by small amounts. Based upon these results, new values of the con- 

trol parameters are  chosen, each change giving a predicted increase in the 

probability. The automated part of this scheme is choosing the small varia- 

tions and the size of the expected increase so that an increase is indeed at- 

tained. If a decrease does occur, the last set of variations of the control 

parameters are reduced until an increase in the probability occurs. (The 

sample test case encountered only 3 decreases in 45 attempts to improve 

the probability. ) 

The program requires that a nominal mission plan achieving lunar 

capture be used to start the iteration procedure. Since such a plan may be 

difficult to find, the program includes a feature which helps the analyst to 
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find one. It allows the second thrust to be triggered not on time from launch 

but on time after entering the moon's gravitational sphere of influence. So, 

if the analyst stacks cases of a promising nominal where only this time 

parameter is changed in an arbitrary way, one run on the computer will 

provide a key to a satisfactory set  of control parameters. 

The integration routine used to solve the perturbation equation is the 

scheme proposed by Samuel Pines. The disturbing functions a re  the gravi- 

tational forces for  up to six planets and thrust. The program is designed to 

use less computer time when only earth and moon gravitational forces are 

included. It takes .95 min. on the 7094 Mod 1 for a complete lunar trajec- 

tory with a transit time of 75 hours. 
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POMS Input 

Each piece of input is defined as one of four categories: integer, fixed 

point, floating point, or alphanumeric with the notation I, FX, FL, or A, 

respectively. The quantity in the description column is entered on the speci- 

fied card in the appropriate columns. The name given is the name used for 

the quantity internally in the program. An asterisk before a name means 

that the dimension is determined by KLM. 

Card Cols. -- 
1-5 

6-10 

11-15 

16-20 

21-25 

26-30 

31-35 

12 cols. 
Per 
value 

Name Type 

NUMSTA I 

KLM I 

MREF I 

KOND I 

IFLAG I 

ITMAX I 

IPR I 

VAR(1) FL 

VAR(2) FL 

VAR(3) FL 

VAR(4) FL 

VAR(5) FL 

VAR(6) FL 

Description 

Number of stations 

0 - Input in ER and ER/hr 
1 -Input in km and km/sec 

Reference body (1-6) 

Print indicator for trajectory parameters 

Print indicator for statistics 

Maximum number of iterations 

Print indicator for iterations 

Launch time (hrs) from nominal 

Inertial launch azimuth (deg) 

Length of time from launch to first thrust (hrs) 

Pitch of thrust vector (deg) 

Yaw of thrust vector (deg) 

Length of time from launch to second thrust (hrs) 

12 cols. PVAR(1-6) FL Changes made to the above parameters to com- 
pute the partials of the probability numeri- 
cally (same dimensions as the parameters) 

Per 
value 

12 cols. WTD(1) FL Weight flow of first thrust (#/set) 

per WTD(2) FL Weight flow of second thrust (#/sec) value 
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Card Cols. -- 
4 12 cols. 

Per 
value 

5 12 cols. 
Per  

value 

6 12 cols. 
Per 

value 

7 12 cols. 
Per 

value 

8 

1-6 

7-12 

13-18 

Name 

DTB(1) 

DTB(2) 

D(1) 

D (2) 

DTBOS 

DWBOG 

WTIN 

DKOK 

ALP 

GAM 

%MACE 

*RAL 

*RPL 

%PU 

*RAU 

TAMR 

SWGHT 

DP 

FPA 

VEL0 

NYEARP 

DAYS 

XYE 

FL 

FL 

FL 

FL 

FL 

FL  

FL  

FL  

FL  

FL  

FL  

FL  

FL 

FL 

FL  

FL  

FL  

FL 

FL  

FL 

I 

FX 

HRS FX 

Description 

Length of first thrust (sec) 

Length of second thrust (sec) 

Thrust of first burn (# force) 

Thrust of second burn (# force) 

Time for booster ascent (hrs) 

Excess weight dropped after first thrust (#) 

Weight at injection into earth parking orbit (#) 

Relative e r ror  of thrust magnitude 

Thrust direction error  (deg) 

Geocentric angle measured in the azimuth plane 
from launch to the earth parking orbit 
injection point (deg) 

Altitude of earth parking orbit 

Lower limit on apocynthion 

Upper limit on apocynthion 

Lower limit on pericynthion 

Upper limit on pericynthion 

Time (hrs) after entering moon's sphere of 
influence, to thrust 

Not being used at present 

Gradient step size (assumed to be 10 if 

Flight path angle at injection into earth 

Earth parking orbit injection velocity (km/sec) 

no value is input) 

parking orbit (deg) 

Nominal launch date 

Year 

Day 

Hour 
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Card Cols. -- 
8 19 -24 

25-30 

9 

1-2 

3-14 

15-26 

27-29 

30-35 

36-47 

48-49 

50-55 

56-67 

10 1-6 

7-18 

19-30 

31-42 

43-54 

Name Type 

HMIN FX 

SEC FX 

K 

STANM 

SLON 

SLONM 

SLONS 

SLAT 

SLATM 

SLATS 

SALT 

I 

A 

FX 

FX 

FX 

FX 

FX 

FX 

FX 

BMU FX 

DTC FL 

DTPR FL 

DTT FL 

DTPRTH FL 

Description 

Minutes 

Seconds 

Launch site 

Station number 

Station name 

Longitude - degrees 

- minutes 

- seconds 

Geodetic latitude - degrees 

- minutes 

- seconds 

Geodetic altitude (feet) 

Six indicator for planets: 1 - planet included 
0 - planet excluded 

Integration interval for coast 

Print interval for coast 

Integration interval for thrust 

Print intervai for thrust 

Some of the input quantities require further explanation. 

MREF is chosen from the table below: 

MREF Reference 

1 Earth 

2 Sun 

3 Moon 

4 Venus 

5 M a r s  

6 Jupiter 
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The BMU indicators represent the planets according to the pre- 

ceding table. 

KOND governs the printing of the osculating elements and is the 

frequency in minutes that print-out is desired. 

IFLAG governs the printing of the covariance matrix, S matrix 

and hz matrix, and is the frequency in minutes that print-out is desired. 

IPR governs all print-out for an iteration except the results of the 

iteration. 

1: Print-out on first and last iterations 

2: Every iteration 

3: Every iteration and every variation trajectory 

TAMR is a quantity that is only used to obtain an acceptable nominal 

trajectory. Its value is the number of hours after entering moon reference 

that the second thrust should occur. Many cases may be stacked where only 

the value of TAMR is changed, thus automating the choice of a nominal 

trajectory captured by the moon after the second thrust. 

DTC is the integration interval for the translunar leg of the mission. 

This value is multiplied by 1/16 to obtain the near-earth integration interval 

and by 1/8 to obtain the near-moon interval. 
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Input Values for the Initial Nominal of the Test Case 

The test case chosen was for a mission scheduled for launch from 

Cape Kennedy at 16 hours 12 minutes of the 182 day of 1966. The co- 

ordinates used for the Cape were: 

Longitude : -80' 34' 35.45" 

Geodetic latitude : 28' 28' 54.34" 

Geodetic altitude : 44.78 feet 

0 The nominal azimuth of the launch plane is 89.4 . The booster ascent 

carries a payload of 806 pounds downrange in the launch plane through a 

geocentric angle of 22 in .15075 hours to an altitude of 146.16 km with 

a velocity of 8.37565226 km/sec. 

0 

The first thrust occurs .311 hours after launch with a 6188.4 pound 

thrust for 22.6 seconds and a weight flow of 22.4601 77  pounds per second. 

After thrust, 86.4  pounds of excess .weight is dropped. 

The second thrust occurs 73 hours after launch with an 845.945945 

pound thrust for 22.2  seconds and a weight flow of 3.0765765 pounds per 

second. 

The RMS value of the relative error of the magnitude is .003319. 

The RMS value of the half cone angle for the thrust direction error  is 1.462 . 
The limits for apocynthion and pericynthion a re  3346 km and 38000 km. 

This nominal input produced a 5% probability of success for the above mis- 

sion plan. The program was able to attain an apparent maximum probability 

of 95% after 42 iterations by choosing better values of the control parameters. 

0 
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